Вконтакте Facebook Twitter Лента RSS

Чем больше частота шины fsb. Как разогнать процессор: практическая сторона вопроса. Влияние на производительность ПК

Что такое Front side bus?

FSB (Front Side Bus ) - системная шина процессора, обеспечивающая связь ЦП с остальной периферией (оперативная память, порты ввода-вывода, видеокарта, жесткий диск и др.).

FSB работает в качестве магистрального канала между процессором и чипсетом.
Частота системной шины измеряется в GHz или MHz.

Частота ЦП превышает частоту FSB, а процессор пересылает данные на частоте системной шины.

Величина, на которую частота процессора превышает частоту системной шины, называется множителем.
Чем выше частота системной шины, тем выше производительность процессора.

Драйвер AMD Radeon Software Adrenalin Edition 19.9.2 Optional

Новая версия драйвера AMD Radeon Software Adrenalin Edition 19.9.2 Optional повышает производительность в игре «Borderlands 3» и добавляет поддержку технологии коррекции изображения Radeon Image Sharpening.

Накопительное обновление Windows 10 1903 KB4515384 (добавлено)

10 сентября 2019 г. Microsoft выпустила накопительное обновление для Windows 10 версии 1903 - KB4515384 с рядом улучшений безопасности и исправлением ошибки, которая нарушила работу Windows Search и вызвала высокую загрузку ЦП.

Драйвер Game Ready GeForce 436.30 WHQL

Компания NVIDIA выпустила пакет драйверов Game Ready GeForce 436.30 WHQL, который предназначен для оптимизации в играх: «Gears 5», «Borderlands 3» и «Call of Duty: Modern Warfare», «FIFA 20», «The Surge 2» и «Code Vein», исправляет ряд ошибок, замеченных в предыдущих релизах, и расширяет перечень дисплеев категории G-Sync Compatible.

Драйвер AMD Radeon Software Adrenalin 19.9.1 Edition

Первый сентябрьский выпуск графических драйверов AMD Radeon Software Adrenalin 19.9.1 Edition оптимизирован для игры Gears 5.

Микропроцессор персонального компьютера через шину FSB подключается к системному контроллеру или северному мосту чипсета . Системный контроллер имеет в своем составе контроллер ОЗУ (в некоторых микропроцессорах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин , к которым подключаются периферийные устройства .

Архитектура некоторых компьютеров предусматривает подключение к северному мосту наиболее производительных периферийных устройств, например графической платы с шиной PCI-Express 16х , а менее производительные устройства, например модуль BIOS с шиной PCI , подключаются кюжному мосту , который соединяется с северным мостом специальной шиной, например Hyper Transport , MuTIOL , V-Link , A-Link и т.д.

Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.

Некоторые компьютеры имеют внешнюю кэш-память , подключенную через шину заднего плана процессора (Back Side Bus - ВSB) , которая обладает более высокой пропускной способностью чем шина FSB, но работает только со специфичными устройствами.

Каждая из вторичных шин, по отношению к шине FSB, работает на своей частоте, которая может быть как выше, так и ниже этой частоты. Иногда частота вторичной шины является производной от частоты FSB, а иногда задается независимо.

На системных платах старших поколений частота системы ОЗУ совпадала с частотой на шине FSB, на современных системных платах эти частоты могут отличаться.

В таблице ниже представлены сравнительные характеристики шин FSB для некоторых микропроцессоров.

Сравнительные характеристики шин FSB для некоторых процессоров

Все рассмотренные в таблице выше шины 64-разрядные. Самой быстрой из шин всех типов является QPB - одно из наиболее интересных усовершенствований в процессорах поколения Р7. Учетверенная внутренняя шина подкачки (Quad-Pumped Bus - QPB) синхронизируется внешней системной частотой 100, 133, 166, 200 или 266 МГц.

Процессор организует подкачку данных - четыре раза за такт системной синхронизации, т.е. с коэффициентом передачи 4х. Таким образом, частота на шине FSB возрастает и составляет соответственно 400, 533 и 800 МГц. Ширина шины QPB - 64 разряда, а это означает, что за один такт синхронизации по шине пересылается четыре пакета 64-разрядных данных.

Более ранние 64-разрядные шины компании Intel - логика хост-шины Host Bus, или GTL+ (Gunning Transceiver Logic) и AGTL+ (AssistedGunning Transceiver Logic) пересылают за такт синхронизации всего один пакет данных. Шины позволяют подключать до двух микропроцессоров, причем быстродействие при этом делится пополам.

Принцип работы шин CTI+ и ACTI+

Шина Alpha EV6, которую использовала компания AMD в своих микропроцессорах Athlon и Athlon ХР , позволяет передавать два пакета за такт по фронту и срезу импульса синхронизации. Ширина этой шины - 72 разряда, восемь из них используются для контроля достоверности кода данных ЕСС. Благодаря точечному подключению шина допускает без потери производительности подключить до 14-ти процессоров.

Принцип работы шины Alpha EV6

Процессоры AMD Athlon 64, AMD Athlon FX и Opteron имеют встроенный в процессор контроллер памяти, что несколько изменяет назначение FSB.


Лабораторная BIOS: настройка системной шины (FSB)

FSB (Front Site Bus) – системная шина, которая соединяет ЦП с северным мостом чипсета материнской платы. Системная шина обеспечивает взаимодействие процессора с компонентами компьютера. Частота системной шины – частота, с которой работает память. Иногда называется внешней частотой.

Практический разгон процессора

Методы разгона процессора

Существует два метода overclocking"а: повышение частоты системной шины (FSB) и увеличение коэффициента умножения (множителя). На данный момент второй метод невозможно применить практически на всех серийных процессорах AMD. Исключениями из правил являются: процессоры Athlon XP (Thoroughbred, Barton, Thorton)/Duron (Applebred), выпущенные до 39 недели 2003 года, Athlon MP, Sempron (socket754; только понижение), Athlon 64 (только понижение), Athlon 64 FX53/55. В серийных процессорах производства Intel множитель также полностью заблокирован. Разгон процессора путем увеличения множителя является самым "безболезненным" и простым, т.к. возрастает только тактовая частота процессора, а частоты шины памяти, шин AGP/PCI остаются номинальными, поэтому определить максимальную тактовую частоту процессора, на которой он сможет работать корректно, с помощью данного способа особенно просто. Жаль, что сейчас найти в продаже процессоры AthlonXP с незаблокированным множителем довольно трудно, если вообще возможно. Разгон процессора посредством увеличения FSB имеет свои особенности. К примеру, с ростом частоты FSB растет частота шины памяти и частоты шин AGP/PCI. Особое внимание нужно обратить на частоты шин PCI/AGP, которые в большинстве чипсетов связаны с частотой FSB (не касается nForce2, nForce3 250). Обойти эту зависимость можно только если BIOS вашей материнской платы имеет соответствующие параметры — так называемые делители, отвечающие за отношение PCI/AGP к FSB. Рассчитать нужный вам делитель можно по формуле FSB/33, т.е., если частота FSB = 133 MHz, то следует 133 разделить на 33, и вы получите нужный вам делитель — в данном случае таковым является 4. Номинальной частотой для шины PCI являются 33 MHz, а максимальной — 38-40 MHz, выше ее устанавливать, мягко говоря, не рекомендуется: это может привести к выводу из строя PCI-устройств. По умолчанию частота шины памяти поднимается синхронно с частотой FSB, поэтому, если память не имеет достаточного потенциала для разгона, она может сыграть лимитирующую роль. Если очевидно, что частота оперативной памяти достигла своего предела, можно предпринять следующее:

  • Увеличить тайминги памяти (например, 2.5-3-3-5 изменить на 2.5-4-4-7 — это может помочь вам выжать еще несколько MHz из оперативки).
  • Повысить напряжение на модулях памяти.
  • Разгонять процессор и память асинхронно.

Чтение — мать учения

Для начала вам потребуется изучить инструкцию к своей материнской плате: найти разделы меню BIOS, отвечающие за частоту FSB, RAM, таймингов памяти, коэффициента умножения, напряжений, делителей частот PCI/AGP. Если в BIOS нет никаких из вышеприведенных параметров, тогда разгон можно осуществить с помощью перемычек (джамперов) на материнской плате. Назначение каждого джампера вы можете найти в той же инструкции, однако обычно на самой плате уже нанесена информация о функции каждого. Бывает, сам производитель намеренно скрывает "продвинутые" настройки BIOS — для их разблокировки требуется нажать определенное сочетание клавиш (такое часто встречается у материнских плат производства Gigabyte). Повторюсь: всю необходимую информацию можно найти в инструкции или на официальном сайте производителя материнской платы.

Практика

Заходим в BIOS (обычно для входа нужно нажать клавишу Del в момент пересчета объема оперативной памяти (т.е., когда появились первые данные на экране после перезагрузки/включения компьютера, жмите клавишу Del), но встречаются модели материнских плат и с иной клавишей для входа в BIOS — например, F2), ищем меню, в котором осуществляется изменение частоты системной шины, шины памяти и управление таймингами (обычно эти параметры расположены в одном месте). Думаю, что разгон процессора с помощью повышения множителя затруднений не вызовет, поэтому перейдем сразу к поднятию частоты системной шины. Поднимаем частоту FSB (примерно на 5-10% от номинала), потом сохраняем установленные изменения, перезагружаемся и ждем. Если все нормально, система запускается с новым значением FSB и как следствие с более высокой тактовой частотой процессора (и памяти, если вы разгоняете их синхронно). Загрузка Windows без каких-либо эксцессов означает, что полдела уже сделано. Далее запускаем программу CPU-Z (на момент написания статьи последней ее версией являлась 1.24) или Everest и удостоверяемся, что тактовая частота процессора возросла. Теперь нам нужно проверить процессор на стабильность — думаю, у каждого на винчестере есть дистрибутив 3DMark 2001/2003 — они хоть и предназначены для выявления быстродействия видеокарты, но для поверхностной проверки стабильности системы можно "погонять" и их. Для более серьезной проверки нужно использовать Prime95, CPU Burn-in 1.01, S&M (более подробно о программах-тестерах ниже). Если система прошла тестирование и ведет себя стабильно, перезагружаемся и начинаем все сначала: опять заходим в BIOS, еще повышаем частоту FSB, сохраняем изменения и тестируем систему заново. Если во время тестирования вас "выкинуло" из программы, система зависла или перезагрузилась, следует "откатиться" на шаг назад — на ту частоту процессора, когда система вела себя стабильно — и провести более объемное тестирование, чтобы удостоверится в полной стабильности работы. Не забывайте следить за температурой процессора и частотами шин PCI/AGP (в ОС частоту PCI и температуру можно посмотреть с помощью программы Everest или фирменных программ производителя материнской платы).

Повышение напряжения

Не рекомендуется повышать напряжение на процессоре более чем на 15-20%, а лучше, чтобы оно варьировалось в пределах 5-15%. Смысл в этом есть: повышается стабильность работы и открываются новые горизонты для разгона. Но будьте осторожны: вместе с повышением напряжения повышается потребляемая мощность и тепловыделение процессора и как следствие увеличивается нагрузка на блок питания и растет температура. Большинство материнских плат позволяют выставлять напряжение на оперативной памяти до 2,8-3,0 В, безопасной границей является 2,9 В (для дальнейшего увеличения напряжения нужно делать вольтмод материнской платы). Главное при повышении напряжения (не только на оперативной памяти) — контролировать тепловыделение, и, если оно увеличилось, организовать охлаждение разогнанного компонента. Одним из лучших способов определения температуры какого-либо компонента компьютера является прикосновение руки. Если вы не можете без боли от ожога дотронуться до компонента — ему требуется срочное охлаждение! Если компонент горячий, но руку держать можно, то охлаждение ему бы не помешало. И только если вы чувствуете, что компонент еле теплый или вообще холодный, то все хорошо, и охлаждения ему не нужно.

Тайминги и делители частоты

Тайминги — это задержки между отдельными операциями, производимыми контроллером при обращении к памяти. Всего их шесть: RAS-to-CAS Delay (RCD), CAS Latency (CL), RAS Precharge (RP), Precharge Delay или Active Precharge Delay (чаще обозначается как Tras), SDRAM Idle Timer или SDRAM Idle Cycle Limit, Burst Length. Описывать значение каждого — дело бессмысленное и никому не нужное. Лучше сразу выяснить, что лучше: маленькие тайминги или высокая частота. Существует мнение, что для процессоров Intel важнее тайминги, тогда как для AMD — частота. Но не стоит забывать, что для процессоров AMD чаще всего важна частота памяти, достигнутая в синхронном режиме. Для различных процессоров "родными" являются разные частоты памяти. Для процессоров Intel "своими" считаются следующие сочетания частот: 100:133, 133:166, 200:200. Для AMD на чипсетах nForce лучше синхронная работа FSB и RAM, а на связку AMD + VIA асинхронность влияет мало. На системах с процессором AMD частота памяти выставляется в следующих процентных соотношениях с FSB: 50%, 60%, 66%, 75%, 80%, 83%, 100%, 120%, 125%, 133%, 150%, 166%, 200% — это и есть те же делители, но представленные немного по-другому. А на системах с процессором Intel делители выглядят более привычно: 1:1, 4:3, 5:4 и т.д.

Черный экран

Да, бывает и такое:) — например, при переразгоне: вы просто установили такую тактовую частоту процессора или оперативной памяти (возможно, указали слишком низкие тайминги памяти), что компьютер не может запуститься — вернее, он запускается, но экран остается черным, и система не подает никаких "признаков жизни". Что делать в этом случае?

  • Многие производители встраивают в свои материнские платы систему автоматического сброса параметров на номинальные. И вот после такого "казуса" с завышенной частотой или низкими таймингами данная система должна выполнить свою "черную" работу, но это происходит не всегда, поэтому нужно быть готовым поработать ручками.
  • После включения компьютера нажать и удерживать клавишу Ins, после чего он должен успешно стартовать, а вы должны зайти в BIOS и установить рабочие параметры компьютера.
  • Если второй способ вам не помогает, нужно выключить компьютер, открыть корпус, найти на материнской плате джампер, отвечающий за сброс настроек BIOS — так называемый CMOS (обычно располагается около микросхемы BIOS) — и установить его в режим Clear CMOS на 2-3 секунды, а затем вернуть в номинальное положение.
  • Встречаются модели материнских плат без джампера сброса настроек BIOS (производитель делает ставку на свою автоматическую систему сброса настроек BIOS) — тогда нужно вынуть батарейку на некоторое время, которое зависит от производителя и модели материнской платы (я провел такой эксперимент на своей Epox EP-8RDA3G: вынул батарейку, подождал 5 минут, и настройки BIOS сбросились).

Информационные программы и утилиты

CPU-Z — одна из лучших программ, предоставляющих основные данные о процессоре, материнской плате и оперативной памяти, установленных в вашем компьютере. Интерфейс программы прост и интуитивен: нет ничего лишнего, а все самое важное на виду. Программа поддерживает самые последние новинки из мира "железа" и периодически обновляется. Последняя версия на момент написания статьи — 1.24. Размер — 260 Kb. Скачать программу можно по адресу cpuid.com .

Everest Home/Professional Edition (бывшая AIDA32) — информационно-диагностическая утилита, обладающая более продвинутыми функциями просмотра информации об установленном "железе", операционной системе, DirectX и т.п. Различия между домашней и профессиональной версией таковы: Pro-версия не имеет модуля тестирования оперативной памяти (чтение/запись), в ней также отсутствует довольно интересный подраздел Overclock, в котором собрана основная информация о процессоре, материнской плате, оперативной памяти, температуре процессора, материнской платы и винчестера, а также о разгоне вашего процессора в процентах:). В Home-версии нет учета ПО, расширенных отчетов, взаимодействия с базами данных, удаленного управления, функций уровня предприятия. В целом это и есть все различия. Сам я пользуюсь Home-версией утилиты, т.к. дополнительные возможности Pro-версии мне не нужны. Чуть не забыл упомянуть, что Everest позволяет просматривать частоту шины PCI — для этого нужно развернуть раздел Системная плата, кликнуть по подразделу с аналогичным названием и найти пункт Свойства шины чипсета/Реальная частота. Последняя версия на момент написания статьи — 1.51. Home-версия бесплатна и весит 3 Mb, Pro-версия платная и занимает 3,1 Mb. Скачать утилиту можно по адресу lavalys.com .

Тестирование стабильности

Название программы CPU Burn-in говорит само за себя: программа предназначена для "разогрева" процессора и проверки его стабильной работы. В главном окне CPU Burn-in вам нужно указать продолжительность, а в опциях — выбрать один из двух режимов тестирования:

  • тестирование с включенным контролем ошибок (Enable error checking);
  • тестирование с выключенным контролем ошибок, но с максимальным "разогревом" процессора (Disable error checking, maximum heat generation).

При включении первой опции программа проверит корректность вычислений процессора, а вторая позволит "разогреть" процессор практически до температур, близких к максимальным. CPU Burn-in весит около 7 Kb.

Следующей достойной программой для тестирования процессора и оперативной памяти является Prime95. Главным ее преимуществом является то, что при обнаружении ошибки программа самопроизвольно не "вешается", а выводит на рабочее поле данные об ошибке и времени ее выявления. Открыв меню Options -> Torture Test…, вы можете самостоятельно выбрать из трех режимов тестирования или указать свои параметры. Для более эффективного обнаружения ошибок процессора и памяти лучше всего задать третий режим тестирования (Blend: test some of everything, lots of RAM tested). Prime95 весит 1,01 Mb, скачать ее можно по адресу mersenne.org .

Относительно недавно свет увидела программа S&M. Сначала она задумывалась для проверки стабильности конвертера питания процессора, потом была реализована проверка оперативной памяти и поддержка процессоров Pentium 4 с технологией HyperThreading. На данный момент последней версией S&M 1.0.0(159) поддерживается более 32 (!) процессоров и имеется проверка стабильности работы процессора и оперативной памяти, кроме того, S&M имеет гибкую систему настроек. Суммировав все вышесказанное, можно утверждать, что S&M является одной из лучших программ в своем роде, если не самой лучшей. Интерфейс программы переведен на русский язык, поэтому запутаться в меню довольно сложно. S&M 1.0.0(159) весит 188 Kb, скачать ее можно по адресу testmem.nm.ru .

Вышеупомянутые программы-тестеры предназначены для проверки процессора и оперативной памяти на стабильность и выявления ошибок в их работе, все они бесплатны. Каждая из них нагружает процессор и память практически полностью, но хочу напомнить, что программы, применяемые в повседневной работе и не предназначенные для тестирования, редко могут так нагружать процессор и оперативную память, поэтому можно сказать, что тестирование происходит с определенным запасом.

Автор не несет никакой ответственности за поломку любого аппаратного обеспечения вашего компьютера, а также за сбои и "глюки" в работе любого программного обеспечения, установленного на вашем компьютере.

Front Side Bus (FSB) — шина, посредством которой можно организовать соединение x86-совместимых центральных процессоров с внутренними устройствами.

Современный компьютер, построенный на базе x86-совместимого микропроцессора, устроен так: посредством FSB микропроцессор подключается к системному контроллеру («северному мосту»), который, в свою очередь, имеет в своем составе контроллер оперативной памяти. Следует отметить, что некоторые модели современных ПК имеют встроенный в микропроцессор контроллер оперативной памяти. То же самое касается и контроллера шин для периферийных устройств.

В настоящее время, широко используется подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства (скажем, видеокарты PCI Express 16x); менее производительные (например, устройства на шине PCI) - подключаются, напротив, к «южному мосту». Он соединяется с северным мостом посредством специальной шины.

Сочетание из «южного» и «северного» мостов называется «набором системной логики», однако чаще используется термин «чипсет ».

Так, FSB выполняет функции магистрального канала между процессором и чипсетом.

Какие-то компьютеры обладают внешней кэш -памятью. Она подключается посредством «задней» шины. Отличается большим быстродействием, в сравнении с FSB, но у нее есть и один недостаток - она способна работать лишь с некоторыми, узкоспецифичными устройствами.

Каждая из вторичных шин работает на своей частоте. Эта частота может отличаться от частоты FSB как в большую, так и в меньшую сторону. Порой, частота вторичной шины - это производная от частоты FSB, порой - независимый параметр.

Характеристики FSB

Процессор

Частота FSB

Тип FSB

Пропускная способность (в теории)

100 / 133 / 200 MHz

3200 / 4266 / 6400 Mb/s *

3200 / 4266 Mb/s *

4266 / 6400 Mb/s *

6400 / 8533 Mb/s *

4266 / 5333 Mb/s *

200 / 266 / 333 / 400 MHz

6400 / 8533 / 10660 / 12800 Mb/s *

Xeon — ядро P6

Xeon — ядро NetBurst

100 / 133 / 166 / 200 / 266 / 333 MHz

3200 / 4266 / 5333 / 6400 / 8533 / 10660 Mb/s *

Xeon — ядро Penryn

266 / 333 / 400 MHz

8533 / 10660 / 12800 Mb/s *

1600 / 2133 Mb/s **

133 / 166 / 200 MHz

2133 / 2666 / 3200 Mb/s **

Практически все AMD K8

Athlon 64/FX/Opteron

HyperTransport v1

6400 / 8000 Mb/s **

Новое поколение AMD K8 и все K10

Turion 64 X2/Phenom/Phenom II

1600 / 1800 / 2000 MHz

HyperTransport v3

12800 / 14400 / 16000 Mb/s **

900 / 1000 / 1250 MHz

7200 / 8000 / 10000 Mb/s

Примечания:

* 1 2 3 4 5 6 7 8 процессоры Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Intel Core и Intel Core 2 применяют системную шину QPB (Quad Pumped Bus). Она передает данные 4 раза за цикл;

** 1 2 3 4 Шины EV6 и HT передают данные 2 раза за цикл (Double data rate ).

Влияние на производительность ПК

Частота процессора

Частоты, на которых работают ЦП и FSB, обладают общей опорной частотой. По факту, эти частоты определяются коэффициентом умножения, по следующей формуле:

Частота устройства = Опорная частота * Коэффициент умножения

Память

Здесь можно выделить два случая:

  • Контроллер памяти в системном контроллере. В более ранние периоды развития компьютерных технологий, частота работы памяти была идентична частоте FSB. Однако, современные ПК уже далеки от этого: в них частоты FSB и шины памяти уже редко одинаковые. Из-за того, что работа процессора с памятью производится через FSB, производительность FSB является одним из ключевых характеристик системы.
  • Контроллер памяти в процессоре. Современные процессоры оснащены интегрированным контроллером памяти. Так, зависимость производительности этих процессоров от FSB-шины - минимальна.

Периферийные шины

В свое время, на компьютерном рынке существовали системы (в основном, очень старые), в которых FSB и периферийные шины ISA, PCI, AGP обладали общей опорной частотой. В таких системах попытки изменить частоту FSB посредством смены опорной частоты приводили к изменению частот периферийных шин, или более того, частот внешних интерфейсов (PATA).

Другие системы (в основном, новые) устроены таким образом, что частоты периферийных шин в них никаким образом не зависят от частоты FSB.

Контроллеры памяти и периферийных шин систем с высокой интеграцией могут быть встроены непосредственно в процессор, а сама FSB в таких процессорах уже принципиально отсутствует. Типичный пример подобной системы - платформа Intel LGA1156.

Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы . Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.

© 2024 Компьютерные для начинающих